0=64-t-5t^2

Simple and best practice solution for 0=64-t-5t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=64-t-5t^2 equation:



0=64-t-5t^2
We move all terms to the left:
0-(64-t-5t^2)=0
We add all the numbers together, and all the variables
-(64-t-5t^2)=0
We get rid of parentheses
5t^2+t-64=0
a = 5; b = 1; c = -64;
Δ = b2-4ac
Δ = 12-4·5·(-64)
Δ = 1281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1281}}{2*5}=\frac{-1-\sqrt{1281}}{10} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1281}}{2*5}=\frac{-1+\sqrt{1281}}{10} $

See similar equations:

| 9/5c+32=41 | | -15x+4=2x+81 | | 41=9/5c+32 | | (130-7x)=(20+3x) | | 5x-3x=5-2 | | 59+2x=115 | | 628+124m=1504 | | Y=7x-290 | | (6x+1)/(2x-1)=5 | | (7+2x)/2=5 | | 4-3(p+2)=2(p-4) | | 5x+3x=5-2 | | x+88=121 | | k.12=-5k-3 | | -8x+2=28 | | (6x+1)/(2x-1)=9 | | 0.5(5-7x=8-1(4x+6) | | 4+3(w-9)=-12 | | P(x)=-6x-9 | | 5x+3x=2+5 | | 7x−9=4x | | 43+8p=p+21 | | 2x+45=87 | | 13+2a=3a-14+24 | | 14v+50=2(5v+29) | | 420(2r+10=) | | -w+66=2w | | 8x=x2+15 | | n4+5=17 | | y2-144=0 | | 4-3t=6t-8 | | 3x-9-3=2x+14 |

Equations solver categories